U.S. DEPARTMENT OF COMMERCE NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION NATIONAL WEATHER SERVICE

JANUARY 1971

COMPARATIVE ANALYSIS OF A NEW INTEGRATION METHOD WITH CERTAIN STANDARD METHODS

by
J. P. Gerrity and P. Polger

Development Division
National Meteorological Center

Office Note 51

Recently, experiments haye been made with a new numerical scheme for integrating the primitiye equations. The new method may be expressed Ey reference to the wave equation

$$
\begin{equation*}
\frac{\partial \zeta}{\partial t}=i \otimes \bar{\omega} \zeta \tag{1}
\end{equation*}
$$

by writing

$$
\begin{align*}
& \zeta_{*}^{\mathrm{n}+1}=\zeta^{\mathrm{n}-1}+2 \Delta t 1 \omega \zeta_{*}^{\mathrm{n}} \tag{2a}\\
& \zeta^{\mathrm{n}}=\alpha \zeta_{*}^{\mathrm{n}}+.5(1-\alpha)\left(\zeta^{\mathrm{n}-1}+\zeta_{*}^{\mathrm{n}+1}\right) \tag{2b}
\end{align*}
$$

in which the index, n, fixes the time level and α is a fraction less than unity.

When α is set to unity, the scheme is the well-known "leapfrog", method. When α is set to zero, the method reduces to one studied by Kurihara [1] and called by him the "leapfrog-backward" method. To show this last point, (2b) may be rewritten as $(\alpha=0)$

$$
\zeta^{\mathrm{n}+1}=.5\left(\zeta^{\mathrm{n}}+\zeta^{\mathrm{n}}+2 \Delta t i \omega \zeta_{\dot{*}}^{\mathrm{n}+1}\right)
$$

or

$$
\begin{equation*}
\zeta^{\mathrm{n}+1}=\zeta^{\mathrm{n}}+\Delta t i \omega \zeta^{\mathrm{n}+} \tag{2c}
\end{equation*}
$$

If one defines $b=\omega \Delta t$, following Kurihara, the stability criterion for the leapfrog scheme is

$$
b \leq 1
$$

and for the leapfrog-backward scheme is

$$
b \leq .8
$$

Two other schemes have been used in numerical integrations of the primitive equations and analyzed by Kurihara. These are the Eulerbackward scheme

$$
\begin{align*}
& \zeta^{\mathrm{n}+1}=\zeta^{\mathrm{n}}+\Delta t i \omega \zeta^{\mathrm{n}} \tag{3a}\\
& \zeta^{\mathrm{n}+1}=\zeta^{\mathrm{n}}+\Delta t i \omega \zeta^{\mathrm{n}+1} \tag{3b}
\end{align*}
$$

for which the stability criterion is

$$
\mathrm{b}<1
$$

and the "leapfrog-trapezoidal" method

$$
\begin{align*}
& \zeta_{*}^{\mathrm{n}+1}=\zeta^{\mathrm{n}-1}+2 \Delta t i \omega \zeta^{\mathrm{n}} \tag{4a}\\
& \zeta^{\mathrm{n}+1}=\zeta^{\mathrm{n}}+.5 \Delta t\left(i \omega \zeta^{\mathrm{n}}+i \omega \zeta^{\mathrm{n}+1}\right) \tag{4b}
\end{align*}
$$

One may show that the general scheme (2) provides a solution, $\zeta_{\alpha}^{\mathrm{n}}$, of the form

$$
\begin{equation*}
\zeta_{\alpha}^{\mathrm{n}}=(1-\alpha) \zeta_{L \cdot B}^{\mathrm{n}}+\alpha \zeta_{L}^{\mathrm{n}} \tag{5}
\end{equation*}
$$

where $\zeta_{L . B .}^{n}$ is the result of integration with the leapfrog-backward method, $L \cdot B$ and $\zeta_{\mathrm{L}}^{\mathrm{n}}$ is the result of integration with the leapfrog method.

Now, interest has been expressed in the results to be expected with the method (2) for a variety of values of α. It should be noted that (5) does not necessarily imply stability of the new method whenever the criteria for the leapfrog-backward and leapfrog methods are satisfied separately. Therefore, we made calculations to solve the initial value problem,

$$
\begin{align*}
& \frac{\partial \zeta}{\partial t}=i \omega \zeta \tag{6}\\
& \zeta \text { at } t=0 \quad \text { is } \quad \hat{\zeta}=1+0 i \tag{7}
\end{align*}
$$

with each of the methods discussed above. The starting procedure for use with method (2) was

$$
\begin{align*}
& \zeta^{1}=\hat{\zeta}+i \omega \Delta t \hat{\zeta} \tag{8a}\\
& \zeta^{0}=\alpha \hat{\zeta}+5(1-\alpha)\left(\hat{\zeta}+\zeta_{*}^{1}\right) \tag{8b}
\end{align*}
$$

We defined

$$
\mathrm{R}=\frac{2 \pi}{\omega \Delta \mathrm{t}}
$$

which implies that the period of the wave is R intervals of time measured in Δt-units. The amplitude of the solution after 15 steps is tabulated below for various values of R and α :

αR	6	8	10	12	14	16	18	20	50	100
1.	>100.	1.22	1.16	1.03	1.07	1.08	1.02	1.00	1.00	1.00
.999	>100.	1.21	1.15	1.03	1.07	1.08	1.02	1.00	1.00	1.00
.990	>100	1.15	1.12	1.03	1.06	1.07	1.02	1.00	1.00	1.00
.900	>100	.97	.94	.99	.97	1.00	1.00	1.99	1.00	1.00
.75	>100.	.56	.71	.79	.84	.88	.90	.92	.99	1.00
.50	>100	2.71	.32	.49	.61	.69	.75	.79	.97	.99
.25	>100.	41.00	.11	.21	.36	.48	.57	.64	.94	.99
0.0	>100.	>100.	4.42	.11	.12	.25	.36	.45	.89	.97
-.25	>100	>100.	35.44	2.74	.34	.06	.12	.22	.83	.96
E.B.	2.13	.13	.13	.19	.27	.35	.43	.50	.89	.97
L.T.	.23	.56	.75	.86	.91	.94	.96	.97	1.00	1.00

It will be noted that the leapfrog method yields amplitudes greater than unity even for $R>2 \pi$, the computational stability criterion corresponding to $b \leq 1$. This error is associated with the amplification produced by the "forward," starting scheme. It will be noted that that error is greatly reduced by using $\alpha=190$. The empirical result for $\alpha=0$, suggests that the instability with $R=8,10$ (should be stable by Kurihara's result when $b<.8, R \simeq 8$) is also related to the "forward" start utilized with that method (see eqs. 8) and the greater weight attached to the amplified value of $\zeta_{\%}^{1}$.

Since both the leapfrog-trapezoidal and Euler-backward methods require the computation of two tendencies to advance the calculation, the scheme with $\alpha=.9$ or 775 seems to have considerable merit from an efficiency viewpoint.

REFERENCE

Kurihara, Y., (1965), "On the Use of Implicit and Iterative Methods for Time Integration of the Wave Equation," Monthly Weather Review, 93:1, pp 33-46.

