

U.S. DEPARTMENT OF COMMERCE NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION NATIONAL WEATHER SERVICE

Ŷ

JANUARY 1971

COMPARATIVE ANALYSIS OF A NEW INTEGRATION METHOD WITH CERTAIN STANDARD METHODS

by

J. P. Gerrity and P. Polger

Development Division National Meteorological Center

Office Note 51

Recently, experiments have been made with a new numerical scheme for integrating the primitive equations. The new method may be expressed by reference to the wave equation

$$\frac{\partial \zeta}{\partial t} = \mathbf{i} \cdot \mathbf{\phi} \boldsymbol{\zeta} \tag{1}$$

by writing

$$\zeta_{*}^{n+1} = \zeta^{n-1} + 2\Delta t \mathbf{i} \omega \zeta_{*}^{n}$$
(2a)

$$\zeta^{n} = \alpha \zeta^{n}_{*} + .5(1-\alpha)(\zeta^{n-1} + \zeta^{n+1}_{*})$$
(2b)

in which the index, n, fixes the time level and $\,\alpha\,$ is a fraction less than unity.

When α is set to unity, the scheme is the well-known "leapfrog" method. When α is set to zero, the method reduces to one studied by Kurihara [1] and called by him the "leapfrog-backward" method. To show this last point, (2b) may be rewritten as ($\alpha = 0$)

$$z^{n+1} = .5(\zeta^n + \zeta^n + 2\Delta t i \omega \zeta^{n+1})$$

or

$$\zeta^{n+1} = \zeta^n + \Delta t \quad i \quad \omega \quad \zeta^{n+1}_*$$
 (2c)

If one defines $b = \omega \Delta t$, following Kurihara, the stability criterion for the leapfrog scheme is

b ≤ 1

and for the leapfrog-backward scheme is

۲

Two other schemes have been used in numerical integrations of the primitive equations and analyzed by Kurihara. These are the Eulerbackward scheme

$$\zeta_{*}^{n+1} = \zeta^{n} + \Delta t \ i \ \omega \ \zeta^{n}$$
(3a)

$$\zeta^{n+1} = \zeta^n + \Delta t \mathbf{i} \omega \zeta^{n+1}$$
(3b)

for which the stability criterion is

and the "leapfrog-trapezoidal" method

$$\zeta_{\perp}^{n+1} = \zeta^{n-1} + 2\Delta t \quad i \quad \omega \quad \zeta^n \tag{4a}$$

$$\zeta^{n+1} = \zeta^n + .5 \Delta t \left(i \hat{\omega} \zeta^n + i \omega \zeta^{n+1} \right)$$
(4b)

One may show that the general scheme (2) provides a solution, $\boldsymbol{\zeta}^n_{\alpha},$ of the form

$$\zeta_{\alpha}^{n} = (1-\alpha)\zeta_{L,B}^{n} + \alpha \zeta_{L}^{n}$$
(5)

where $\zeta_{L.B.}^{n}$ is the result of integration with the leapfrog-backward method, and ζ_{L}^{n} is the result of integration with the leapfrog method.

Now, interest has been expressed in the results to be expected with the method (2) for a variety of values of α . It should be noted that (5) does <u>not</u> necessarily imply stability of the new method whenever the criteria for the leapfrog-backward and leapfrog methods are satisfied separately. Therefore, we made calculations to solve the initial value problem,

$$\frac{\partial \zeta}{\partial t} = \mathbf{i} \ \omega \ \zeta \tag{6}$$

$$\zeta$$
 at t = 0 is ζ = 1 + 0 i, (7)

with each of the methods discussed above. The starting procedure for use with method (2) was

$$\zeta^{1} = \hat{\zeta} + \mathbf{i} \, \omega \, \Delta t \, \hat{\zeta}$$
 (8a)

$$\zeta^{0} = \alpha \hat{\zeta} + .5(1-\alpha)(\hat{\zeta}+\zeta_{\perp}^{1})$$
(8b)

٠.

We defined

$$R = \frac{2\pi}{\omega\Delta t}$$

which implies that the period of the wave is R intervals of time measured in Δt -units. The amplitude of the solution after 15 steps is tabulated below for various values of R and α :

aR	6	8	10	12	14	16	18	20	50	100	
1.	>100.	1.22	1.16	1.03	1.07	1.08	1.02	1.00	1.00	1.00	
.999	>100.	1.21	1.15	1.03	1.07	1.08	1.02	1.00	1.00	1.00	
.990	>100.	1.15	1.12	1.03	1.06	1.07	1.02	1.00	1.00	1.00	
.900	>100.	.97	.94	.99	•97	1.00	1.00	.99	1.00	1.00	-
.75	>100.	•56	.71	.79	•84	.88	.90	.92	.99	1.00	
.50	>100.	2.71	.32	.49	.61	.69	.75	.79	.97	.99	
.25	>100.	41.00	.11	.21	.36	.48	.57	•64	.94	.99	
0.0	>100.	≥100 .	4.42	.11	.12	.25	.36	.45	.89	.97	
25	>100.	>100.	35.44	2.74	.34	.06	.12	.22	.83	.96	•
Е.В.	2.13	.13	.13	.19	.27	.35	.43	.50	.89	.97	-
L.T.	.23	.56			•2, •91			.97	1.00	1.00	1

It will be noted that the leapfrog method yields amplitudes greater than unity even for $R > 2\pi$, the computational stability criterion corresponding to $b \le 1$. This error is associated with the amplification produced by the "forward," starting scheme. It will be noted that that error is greatly reduced by using $\alpha = .90$. The empirical result for $\alpha = 0$, suggests that the instability with R = 8,10 (should be stable by Kurihara's result when $b < .8, R \simeq 8$) is also related to the "forward" start utilized with that method (see eqs. 8) and the greater weight attached to the amplified value of ζ_{π}^{1} .

Since both the leapfrog-trapezoidal and Euler-backward methods require the computation of two tendencies to advance the calculation, the scheme with $\alpha = .9$ or .75 seems to have considerable merit from an efficiency viewpoint.

3

REFERENCE

Kurihara, Y., (1965), "On the Use of Implicit and Iterative Methods for Time Integration of the Wave Equation," Monthly Weather Review, 93:1, pp 33-46.